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Abstract

In a recent article, a method was proposed to calculate the mode scattering by an azimuthally non-uniform impedance

liner section inserted in an infinite duct. The method allowed the problem to be formulated as a two-dimensional

Helmholtz eigenvalue problem, which could be solved with general purpose software rather than custom written codes, but

appeared to be limited to ducts without flow. In this short communication, the relevant system of equations is reformu-

lated so that problems with flow can also be treated. The resulting eigenvalue calculation shows good agreement with a

well-tested one-dimensional solver when applied to a circular duct section with constant impedance.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent paper [1] one of us proposed a method to calculate sound transmission through a liner section in
an infinite duct, the liner being axially uniform but azimuthally non-uniform. As discussed in that article many
other approaches to the problem have been proposed but all numerical ones require custom codes to be
written. The approach suggested in Ref. [1] differed by being possible to implement on commercially available
finite element Helmholtz solvers. In this way a certain amount of computation speed per run, and frequency
resolution can be sacrificed in order to greatly reduce the total implementation time.

The procedure proposed was, however, limited to ducts without flow, a significant limitation given that a
typical application likely to require the solution of such a problem is an aircraft engine inlet with a spliced
liner. This limitation is due to the presence of the eigenvalue to be found in the boundary condition of the
problem. It was speculated that iteration about the solution with no flow could be used to obtain the flow
solution. In this short communication a simpler way of formulating the problem as a standard Helmholtz
eigenvalue problem is given, which will allow the method to be applied to problems with flow.

2. Problem

Consider a duct of constant cross-section containing a uniform mean flow. The duct is aligned with the
x-axis, and the mean flow U0 ¼ ðU ; 0; 0Þ where U is constant, and the Mach number M ¼ U=c0o1, i.e. the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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flow is subsonic. Assume that a harmonic noise source (with exp jot time dependence) is introduced into the
duct, resulting in a harmonic pressure field that satisfies the convected Helmholtz equation

joþU
q
qx

� �2

p ¼ c20r
2p. (1)

Modal solutions are sought in the form

pnðxÞ ¼ cnðy; zÞe
�jknx, (2)

where cnðy; zÞ is the nth transverse mode shape, kn is the axial wavenumber and the time dependence has been
suppressed.

Substituting Eq. (2) into Eq. (1) gives the field equation,

r2
?cn þ ½ðk �MknÞ

2
� k2

n�cn ¼ 0, (3)

where r2
? denotes the two-dimensional Laplacian and k ¼ o=c0 is the wavenumber.

The specific acoustic impedance Zspec: (non-dimensional) at the duct wall is given by the ratio of the acoustic
pressure to normal acoustic particle velocity, i.e.

Zspec: ¼
1

r0c0

p

u � nð Þ
, (4)

where r0 is the mean density, uðx; tÞ is the time-harmonic acoustic particle velocity and n is the unit outward
normal on the wall.

The boundary condition in the presence of uniform flow is given by Ingard [2]

joðu � nÞ ¼ ðjoþU0 � =Þ
p

r0c0Zspec:
. (5)

Combining Eq. (5) with Eq. (2) and the acoustic momentum equation,

ðjoþU0 � =Þu ¼ �
1

r0
=p, (6)

leads to

n � =?cn þ
jk

Zspec:
1�M

kn

k

� �2

cn ¼ 0, (7)

where = has been replaced by =?.
There are two difficulties with solving the resulting eigenvalue problem using a general purpose solver. The

first is that the field equation (3) is quadratic in the eigenvalue. The second is that the boundary condition (7) is
formulated in terms of the eigenvalue.

The solution to the first difficulty is well-known: auxiliary field variables that are multiplied by the original
eigenvalue the required number of times are introduced and the resulting larger system is solved. This
procedure was used, for example, by Unruh and Eversman [3] on a problem that was cubic in the eigenvalue.
When applied twice to the present problem, as shown below, it removes the second difficulty at the same time.
In order to allow non-specialist users to solve such transmission problems the resulting reformulation is
spelled out explicitly below.

3. Matrix formulation

Introducing the variables

zn ¼ kncn; xn ¼ knzn ¼ k2
ncn, (8)

means that the field equation, Eq. (3), can be expressed as

r2
?cn þ k2cn � 2kMzn þ ðM

2 � 1Þxn ¼ 0, (9)
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which can be written

r2
?cn

0

0

0
B@

1
CAþ

k2cn � 2kMzn þ ðM
2 � 1Þxn

zn

xn

0
B@

1
CA ¼ kn

0

cn

zn

0
B@

1
CA (10)

or (with a slight abuse of notation)

�=? �

�1 0 0

0 0 0

0 0 0

0
B@

1
CA

=?cn

=?zn

=?xn

0
B@

1
CA

2
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3
75þ

k2
�2kM M2 � 1
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0 0 1

0
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1
CA

cn
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0
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CA ¼ kn

0 0 0

1 0 0

0 1 0

0
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1
CA

cn

zn

xn

0
B@

1
CA. (11)

Similarly for the boundary condition, expanding Eq. (7) leads to

n � =?cn þ
jk

Zspec:
1� 2M

kn

k
þM2 k2

n

k2

� �
cn ¼ 0 (12)

or

n � =?cn þ
jk

Zspec:
cn �

2jM

Zspec:
zn þ

jM2

kZspec:
xn ¼ 0, (13)

which can be written

n �

�1 0 0
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0 0 0
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1
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B@

1
CA ¼

0

0

0

0
B@

1
CA. (14)

Eqs. (11) and (14) are in a form that can be solved with a standard finite element eigenvalue solver, such as that
included in COMSOL Multiphysics (formerly FEMLAB). For some solvers it may be preferable to solve for
an eigenvalue ln ¼ �jkn in which case the auxiliary variables zn and xn would be given by zn ¼ lncn and
xn ¼ l2ncn, etc.

4. Example

Although the method can be applied to arbitrarily shaped ducts with arbitrary impedance distribution
(as long as it is axially uniform) it is hard to find reliable solutions of this nature for validation purposes.
Therefore, it was applied to a circular duct with azimuthally uniform impedance, so that the results could be
compared with eigenvalues found by a one-dimensional solver which uses a tracking method proposed by
Eversman [4] and has been extensively tested and used in previous work [5]. The values of the eigenvalues are
tracked in the complex plane as the impedance is varied, starting at the known rigid wall solution. The
tracking is performed using an initial value problem formulation, and the eigenvalues are refined using the
Newton–Raphson method. There is no unique tracking path in the impedance plane; the path used here was
proposed by Rienstra [6], to ensure that surface wave modes are detected using this type of tracking method.

For the example chosen, the duct radius a is 0:5m, the frequency is 500Hz, M ¼ 0:5 and c0 ¼ 340m s�1.
The specific acoustic impedance of the wall is Zspec: ¼ 2� j.

The axial wavenumbers, calculated by solving Eqs. (11) and (14) using COMSOL Multiphysics with 10
quadratic elements per wavelength are plotted in Fig. 1a. A comparison with the results of the eigenvalue
tracking method is shown in Fig. 1b. The two methods produce near identical results. A similar agreement is
observed at higher wavenumbers.

The mesh size was chosen to be a tenth of the free-space wavelength c0=f in the body of the duct. Close to
the wall of the duct much finer elements were chosen so as to resolve the modes corresponding to surface
waves which are strongly localised to the wall.
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Fig. 1. (a) Spectrum of kna (non-dimensional) found by solving Eqs. (11) and (14) with COMSOL Multiphysics. The branches at the

bottom left and top right correspond to surface waves [7]. (b) Comparison of these results (+) with those obtained from eigenvalue

tracking (�) for a smaller region of the complex plane. Similar agreement is found for the other solutions.
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By solving the above problem over a range of values of ka it was possible to confirm that problems typical of real
aerospace applications with ka � 40 could feasibly be solved on a desktop PC in a matter of hours. It is not possible
to be more precise about the execution time for the following reason. Typical commercial eigenvalue solvers search
for a given number of eigenvalues in the vicinity of a given point in the complex plane. When the spectrum lies on a
number of disjoint branches it may be necessary to search around several points to be sure an adequate spectrum
has been found. For the uniform duct problem used to illustrate the method Rienstra’s asymptotic results [6] can
help to locate the branches, but for more general, azimuthally non-uniform problems such as the liner-splice
scattering treated in Ref. [1] no such results are available and it may be prudent to do multiple searches throughout
the plane. Unfortunately, there is no way of knowing when all modes have been found.

To solve scattering problems such as the liner-splice problem the modes can be calculated as shown and then
sorted into positive and negative travelling modes according to the sign of the imaginary part of kn. Where
surface waves are present this assumes that they are all stable, although in fact they may be unstable,
backward-travelling waves, see Rienstra [6] for further details. This assumption will not affect the mode
matching calculation which proceeds as before. The alternative mode matching approach in three-dimensional
ducts with flow outlined in Astley et al. [8], whereby continuity of mass flux and momentum flux is explicitly
imposed, rather than continuity of pressure and axial velocity may be expected to give improved results.
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